DYSPHAGIA AND OPMD: MORE THAN AN OCULOPHARYNGEAL PROBLEM?

11/12/2011
Leslie Price & Martin Kistin
University of New Mexico
Department of Gastroenterology
OVERVIEW

- Background
- Normal swallowing review
- Symptoms of OPMD dysphagia (difficulties swallowing)
- Tests and evaluation
- Treatment options
BACKGROUND

Late onset hereditary myopathy

- Inherited disease (passed from generation to generation)
- Characterized by progressive ptosis (weakness of the eyelids)
- Dysphagia (difficulties swallowing from weakness of swallowing muscles)
- Limb weakness
- Doesn’t shorten life but may change the way people live
BACKGROUND

OPMD in New Mexico

- 216 patients
- Symptoms
 - Ptosis: 190 (88%)
 - Dysphagia: 127 (59%)
- Onset
 - Ptosis before dysphagia: 20 (43%)
 - Ptosis and dysphagia together: 20 (43%)
 - Dysphagia before ptosis: 7 (14%)
- Mean onset of symptoms
 - Ptosis: 52 years of age
 - Dysphagia: 54 years of age
 - Proximal weakness: 63 years of age

What happens when we eat?

- Ingest food into our mouth and hold it
- Initiate a swallow and move the food to the back of the throat
- A flap/epiglottis covers the wind pipe/trachea to prevent food from entering the trachea and lungs (aspiration)
- A valve at the top of the esophagus (upper esophageal sphincter) opens to allow food into the esophagus
DYSPHAGIA – CLINICAL FEATURES

- Progressive oropharyngeal muscle weakness
 - Manifests with increased time to eat meals and avoidance of dry and solid foods
 - With progression, fluids may become difficult to swallow
 - End stage: characterized by aspiration, malnutrition, and weight loss

- Oral
 - Tongue weakness if observed
 - Muscles too weak to hold food or push bolus to back of throat
DYSPHAGIA – CLINICAL FEATURES

Pharynx

- Muscles may be too weak to get food into esophagus and food may “pool” in little pockets
- Muscles of flap may be too weak to protect voice box and trachea (aspiration)
- Soft palate may not keep food out of nasal cavity
DYSPHAGIA – CLINICAL FEATURES

Esophagus

- The valve at the top end of the esophagus (upper esophageal sphincter) may be too thick and may not open to let food pass into the esophagus
- Older studies suggest that esophageal motility is impaired
- UNM retrospective study: self reported heartburn

UPPER ESOPHAGEAL SPHINCTER

- Inferior pharyngeal constrictor
- Cricopharyngeus muscle
- Cervical esophagus
TESTS FOR SWALLOWING

- Speech Pathology Video Barium Swallow
- UGI Endoscopy
- Esophageal manometry/motility with impedance
BARIUM SWALLOW
Barium Swallow

- First test for dysphagia
- Can identify transfer problems
- Can tell if food goes down the trachea
- Can tell if the upper esophageal sphincter doesn’t relax to allow food into the esophagus
- Look for blockage
BARIUM SWALLOW – COMMON FINDINGS

- Barium/food leaks from mouth or nose (nasal/oral regurgitation)
- Multiple swallows required to move barium/food from the mouth to the throat and esophagus
- Barium/food stays ("pools") in throat and doesn’t get into esophagus
- Throat muscles seem weak
- Barium/food gets past flap into voice box or trachea
- Muscles of the upper esophageal sphincter are too thick and don’t allow food to pass
ESOPHAGEAL MANOMETRY AND IMPEDANCE

- Measures the pressures in the throat and esophagus
- Usually done without sedation
TREATMENT

- Treatment (alteration of the cricopharyngeus muscle anatomy and function)
 - Cricopharyngeal myotomy (surgery)
 - Botox injection (powerful nerve toxin injected to induce muscle relaxation)
 - Esophageal dilation

- Dietary changes:
 - Smaller meals
 - Soft, ground diet
 - Liquids via cup
 - Allow more time to swallow
 - Alternate solids and liquids
 - Eat sitting upright
 - Remain upright after meals 30-60 minutes
 - Head flex/Chin tuck
Cricopharyngeal Myotomy

- First reported by Peterman in 1964
- Fully described by Montgomery and Lynch in 1971
- Technique: division of entire inferior pharyngeal constrictor muscle, cricopharyngeus muscle, and the upper part of the circular fibers of the cervical esophagus
- Hypothesis: remove obstruction made by constrictive UES that cannot be overcome by decreased pharyngeal propulsion
- Retrospective study of 37 patients from 1980 to 1995
 - Mean follow-up 6.2 years:
 - Totally relieved or rarely occurring symptoms: 18/37 (49%)
 - Moderate symptoms/partial: 12/37 (32%)
 - Severe symptoms/failure: 7/37 (19%)
 - Follow-up at 8 years: Nearly all patients had recurrence of swallowing and tracheobronchial symptoms

CRICOPHARYNGEAL MYOTOMY

Retrospective study of 22 patients from 1987 to 1995

- 12 patients underwent cricopharyngeal myotomy
 - Mean follow-up 29.6 months
 - Improvement: 10 patients
 - Partial improvement: 1 patient
 - No improvement: 1 patient

- Factors associated with favorable outcome were residual pharyngeal propulsion and no weight loss

- Conclusion:
 - Cricopharyngeal myotomy is an effective treatment of dysphagia with adequate residual propulsion but does not modify the final prognosis and is contraindicated in cases with pharyngeal aperistalsis

BOTOX

- Injection of powerful neurotoxin produced by *Clostridium botulinum*
- Limited to cases
- Limitations/side effects:
 - Temporary
 - Dysphonia
 - Aspiration
DILATION PROCEDURE

- Conscious sedation: light sleep
- Endoscopy evaluation of esophagus, stomach, and small intestine
- A wire is passed through the scope and positioned in the stomach. The scope is removed and exchanged with the wire
- A savory dilator is passed over the wire to stretch the cricopharyngeus muscle
RECENT DILATION STUDY

- Retrospective study from 1995-2007
- 9 patients
- Dilation performed using 54Fr Savary-Gilliard bougie
- Symptom severity prior to dilation and at follow-up (1, 4, and 12 months) was evaluated using the Sydney Swallow Questionnaire (SSQ)
- Median total treatment dilation period: 13 years
- Median number of dilatations per patient: 7.2
- Median interval between treatments: 15 months

RECENT DILATION STUDY

- Mean SSQ prior to dilation: 1108.11
- Mean SSQ at last follow-up: 297.78 (73% decrease); p= 0.0001
 - Interview was performed an average of 4.57 months after the most recent dilation (range 3-8 months)

Conclusion:
- Repeated cricopharyngeal dilation is a safe, effective, well-tolerated and long-lasting treatment for dysphagia in OPMD

Prior UNM Study

- Retrospective study
 - OPMD patients seen in UNM GI, ENT, Neurology
 - Diagnosis of OPMD with or without genetic confirmation

- Results:
 - 100 patients
 - Mean age 59
 - Dysphagia: 78%
 - Mean age of onset 55
 - Progressive: 83%
 - Weight loss: 21%
 - Heartburn – self-reported in 45%
PRIOR UNM STUDY

Results:
- Prolonged meals and increased symptoms with solids: 90%
- Choking spells: 75%
- Pill dysphagia: 25%

Dysphagia treatment:
- Savory dilation: 20 patients
 - 2 minor complications – dyspnea, epigastric pain
- Botox: 12 patients
 - 5 minor complications – dysphonia, hoarseness, soreness
- Savory dilation and Botox: 8 patients
PRIOR UNM STUDY

Results:
- 82% improved with dilation
- 66% improved with Botox treatment
- No significant difference between the treatments (p=0.4)
- No significant difference in complications between the treatments (p=0.09)
PROSPECTIVE UNM STUDY

- Assess esophageal dysphagia via modern high-resolution manometry
 - Are there esophageal disorders we should be treating?

- We plan to combine manometry with pH/impedance to determine if patients experience acid or non-acid reflux
 - Do OPMD patients benefit from treatment of GERD

- We hope to obtain more information regarding the role of dilation for OPMD patients
 - 54Fr dilation followed by 60Fr dilation if no improvement or recurrence of symptoms
REFERENCES

QUESTIONS?